Large-scale inference of correlation among mixed-type biological traits with phylogenetic multivariate probit models

نویسندگان

چکیده

Inferring concerted changes among biological traits along an evolutionary history remains important yet challenging problem. Besides adjusting for spurious correlation induced from the shared history, task also requires sufficient flexibility and computational efficiency to incorporate multiple continuous discrete as data size increases. To accomplish this, we jointly model mixed-type by assuming latent parameters binary outcome dimensions at tips of unknown tree informed molecular sequences. This gives rise a phylogenetic multivariate probit model. With large sample sizes, posterior computation under this is problematic, it repeated sampling high-dimensional truncated normal distribution. Current best practices employ multiple-try rejection that suffers slow-mixing cost scales quadratically in size. We develop new inference approach exploits: (1) bouncy particle sampler (BPS) based on piecewise deterministic Markov processes simultaneously all dimensions, (2) novel dynamic programming reduces likelihood gradient evaluations BPS linear In application with 535 HIV viruses 24 necessitates 12,840-dimensional normal, our method makes possible estimate across-trait detect factors affect pathogen’s capacity cause disease. framework applicable broader class covariance structures beyond comparative biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Bayesian Inference for Multivariate Probit Models with Sparse Inverse Correlation Matrices

We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modele...

متن کامل

Bayesian Inference for Ordinal Data Using Multivariate Probit Models

Multivariate ordinal data arise in many areas of applications. This paper proposes new efficient methodology for Bayesian inference for multivariate probit models using Markov chain Monte Carlo techniques. The key idea for our approach is the novel use of parameter expansion to sample correlation matrices. We also propose methodology for model selection. Our approach is demonstrated through sev...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Causal Inference on Multivariate Mixed Type Data

Given data over the joint distribution of two univariate or multivariate random variables X and Y of mixed or single type data, we consider the problem of inferring the most likely causal direction between X and Y . We take an information theoretic approach, from which it follows that €rst describing the data over cause and then that of e‚ect given cause is shorter than the reverse direction. F...

متن کامل

Multivariate Hawkes Processes for Large-Scale Inference

In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems, both in the number of events in the observed history n and the number of event types d (i.e. dimensions). The proposed Scalable LowRank Hawkes Process (SLRHP) framework introduces a lowrank approximation of the kernel matrix that allows to perform the nonparametric learning of the d trigger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Statistics

سال: 2021

ISSN: ['1941-7330', '1932-6157']

DOI: https://doi.org/10.1214/20-aoas1394